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load messurenients in air,n=1,2,3

nmiodel  coefficient to be determined empirically,
a= ala)

drag coefficient

lift coefficient

quarter-chord pitching-moment coefficient
airfoil choud, m

modal coefficient to be determined empirically,
e=e(0)

aerodynamic load coefficient, F = F(1)
component of F sutficient for linear range, F; = F; (3

supplement to Fy required for nonlinear range,
Fy =Fy(1)

linear extrapolation of the static load curve, F; 1= F(@)
static load, F, s = Fg(®
mean volue in Taylor expansion for load, F= ﬁ(r)

modulus of first harmonic in Taylor expansion for
load, F = F(r)

forcing function on i, defined by sezond member in
equation (2)

forcing function on F, defined by second member in
equation (3)

reduced frequency of oscillation, k = we/2U,
Reywolds rumber, U_cfv

model coefficiens to be determined empirically,

r=r@)

SYMBOLS

ay

oy

[Q
“

Q)

model coefficient to be determined empirically,
s = s(a)

time, sec

free-stream velocity, m/sec

load measurements in water,n=1,2,3

airfoil incidence, deg

mean value of pitch oscillation, deg

amplitude of pitch oscillation, deg

difference between linear and static load curves, FI -F,
unity-step function

model coefficient to be determined empirically,
A= Na)

kinematic viscosity, m? [sec
coefficients in mth cubic spline equation,n=1,2,3
density, kg/m®

model coefficient to be determined empirically,
g =o(a)

reduced time, 7= wifk

trequency of oscillation in pitch, rad/sec
derivative with respect to time, 9/9¢

second derivative with respect to time, 8% /0r?
imaginary part of quantity

total number of increments in one cycle

real part of gnantity
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APPLICATION OF THE ONERA MODEL OF DYNAMIC STALL

K. W. McAlister, O. Lambert,* and D. Petott

Aeromechanics Laboratury, U.S. Army Research and Technology Laboratories, AVSCOM

SUMMARY

A semiempirical model, developed at the Office National D’Etudes et de Recerches Aerospatiales
(ONFRA), to predict the unsteady loads on an airfoil that is experiencing dynamic stail, is investigated. This
study describes the math model from an engineering point of view, demonstrates the procedure for obtaining
various empirical parameters, and compares the loads predicted by the inodel with those obtained in the
experiment. The procedure is found to be straightforward, and the final calculations are observed to be in
quolitative agreement with the experimental results. Comparisons between calculations and measurements
also indicate that a decrease in accuracy results when the values of both the reduced frequency and the
amplitude of oscillation are large. Potential quantitative improvements in the accuracy of the calculations
ar > discussed in terms of accounting for both the hysteresis in the static data and the effects of stall delay in

the zoverning equations.
INTRODUCTION

When a helicopter is in rorward flight, the rotor hlade
must undergo a cyclic variation in incidence in order to
balance the lift developed both over the advancing and
retreating quadrants (to prevent roll), as well as over the
forward and rearward quadrants (to prevent pitch). Increas-
ing the flight speed of the helicopter increases the asymmetry
in the local velocity distribution between the advancing and
retreating sides. In order to eliminate the roll moment pro-
duced by this asymmetry, the incidence of the rotor blade
must be decreased on the advancing side and increased on the
retreating side, Clearly there is a limit to how much the inci-
dence can be increased without causing the flow to separate
from the blade. Nevertheless, conditions often exist when
this separation boundary is briefly penetrated, giving rise to a
phenomenon called dynamic stall.

The characteristics of dynamic stall are strongly influ-
enced by the time-dependent nature of the viscous region
surrounding the airfoil. Although flow reversal may have
progressed over most of the upper surface of the airfoil
during a rapid increase in incidence, the boundary layer will
normally remain attached for angles of incidence well
beyond the stall angle observed in a steady flow envitonment
(refs. 1 and 2). The onset of stall is initiated by the growth
and passage of a vortex over the airfoil. By the time the
vortex has reached the trailing edge, the resulting unsteady
flow values for the lift, drag, and pitching moment on the

*Ingenieur de I’Armement, Service Technique des Programmes
Aeronautiques, Paris Armees, France.

TResistance des Structures, Office National D’Etudes et de
Recherches Acrospatiales, Chatilloa, France.

airfoil may have doubled their maximum steady flow values
(ref. 3). As the vortex is swept into the wake of the airfoil, a
sudden reversal in the lift and drag loads occurs, thereby
creating a significant source of vibration on the helicopter.
Another damaging aspect of dynamic stall is the rapid growth
and decline of a nose-down pitching moment. This results
from a rearward movement of the center of pressure which
accompanies the passage of the vortex over the airfoil and
into the wake. This impulsive character of the pitching
moment acts as a strong forcing function on the aeroelastic
stability of the rotor blade (ref. 4). A potentially dangerous
situation may therefore develop if the interaction between
the blade and the surrounding air results in oscillations that
are negatively damped. Since rotor blades are typically both
slender and flexible, this unstable conditicn, known as “stall
flutter.” can be especially threatening to the safety of the
helicopter.

In order to calculate the performance biundaries of a
potential roter design, it is essential that the mathematical
formulation adequately models the effects of dynamic stall.
Unfortunately, a closed-form solution does not exist. In fact,
all of the currently available methods employ some form of
approximation or emgiricism, and zre also normally
restricted to two-dimensional flows (ref. 5). Many of these
prediction techniques are based directly on a recognition of
the global atiributes contained in the unsteadv force and
moment responses that are observed in the angle-of-attack
domain. As a consequence, expressions have been devised by
numerous investigators that describe explicitly the “‘time-
delay” character of the various events embodying dynamic
stell. A particularly noteworthy representative of this
approach is presented in reference 6. Two time constants are
featured in this model; one describes the time delay after
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exceeding the static stall angle and before a vortex is shed
from ihe ieading edge of ihe airfoil, and ihe oiher desciibes
the time required for this vortex to reach the trailing edge.

Generally speaking, most prediction techniques for
dyramic stall have been successful only within the limits of
the data from whicn they were fabricated. A model that is
very much dependent on its data base is described in refer-
ence 7. However, a fairly extensive range of data was con-
sidered initially, and allowance was made for expansion.
This method is based on a set of algebraic equations contain-
ing parameters that must be determined from the available
synthesized experimental data. Published results show that
the procedure accurately reconstructs the aerodynamic loads
that occur during dynamic stall over a wide range of condi-
tions. An important factor contributing to the success of
this method lies in the particular set of dynamic parameters
that were postulated. The accuracy of this approach is depen-
dent on the correctness of three semi-empirical expressions
that describe (a) the airfoil incidence when moment stall
occurs, (b) the dimensionless time when the stall vortex
reaches the trailing edge, and (c) the incidence when the flow
reattaches to the surface of the airfoil.

In contrast to the methods that attempt to duplicate the
effects of dynamic stall, a unique method was developed at
ONERA that utiliz2s the characteristics of differential equa-
tions to directly simulate the aerodynamic responses in the
time domain {zef. 8). Although other techniques nay render
more accurate predictions of rotor blade loading, the primary
advantage of the ONERA model is that the governing system
of equations can be readily linearized, therefore making it
well suited for inclusion in analyses of rotor stability (refs. 9
and 10). Certain aspects of the model are continuing to
undergo refinement; however, the fundamental concept
appears to be well established (refs. 11 and 12), and will not
be restated in detail here. Instead, the scope of this presenta-
tion will be tc describe the model from an engineering point
of view, to demonstratz the attainment of various empirical
parameters, and to compare the loads predicted by the model
with those chtained from an experiment.

DESCRIPTION OF THE MATH MODEL

General Equations

A fundamental assumption is made that the aerodynamic
loads can be determined from a set of nonlinear transfer
functions containing input variables that describe the motion
of the airfoil. Considering the operational and stractural
environments that are typical for helicopter rotor blades, it
is further assumed that all input and output variables are
first-order small quantities and that the coupling can be
neglected between the chord force and either the normal
force or the pitching moment. Perhaps the most restrictive

assumption to be imposed, in light of the model’s applicabil-
ity to separated flows, is that the instantaneous feorce and
moment loads do not depart too greatly from their steady
flow values. This condition is necessary so that the coeli-
cients appearing in the governing equations reduce to func-
tions of only velocity and angle of attack for a given airfoil.
Additional simplifying assumptions are then made concern-
ing a reduction in the order of the equations and the elimina-
tion of certain cross coupling coefficients. The validity of
these assumptions could not be demonstrated analytically,
and had to be confirmed by experiment. A significant out-
come from this simplification is that the model can now be
used to evaluate any given load, independent of the others.
Evaluating the model at different amplitudes and frequen-
cies provided the necessary guidance in reaching the final
form of the equations. Airfoil oscillations below stall indi-
cated that the loads could be represented by a first-order
equation, having a real negative pole; whereas oscillations
beyond stall produced loads that required a second-order
equation representation, having two complex conjugate
poles. In view of these observations, the single-equation
formulation for each load was abandoned. Instead, each load
would be divided into two components, one governed by the
first-order equation and the other by the second-order equa-
tion. Letting the function F denoie the total aerodynamic

~ load of interest, the governing equations become

F=F1+F2 (1)
15‘1+7\F1=)\Fl+()\s+0)&+s&' (2)
Fy +aF, + 1F, = (rA+e A) 3)

where the coefficients A, s, 0, @, r, and e will be treated as
functions of a only, the instantaneous incidence of the air-
foil. Strictly speaking, these coefficients are also dependent
on the free-stream velocity (or alternatively on the Mach
number) and the profile of the airfoil. However, to illustrate
the application of this technique, it is sufficient to consider
an incompressible flow so that a becomes the only param-
eter. Since these coefficients actually represent time deriva-
tives (no longer explicitly apparent), and must be determined
experimentally, they can be obtained by performing small-
amplitude oscillations around discrete values of &. The range
of angles over which the coefficients must be specified is
dictated by the large-amplitude cases to be calculated by the
model. The variables FI and A, also functions of «, are com-
pletely determined by the static behavior of the airfoil. Fy
denotes a linear extrapolation of the static load curve and
A is defined to be the difference between this extrapolation
and the actual static curve. Using a hypothetical litt response
as an example, the relation between various terms is illus-
trated in figure 1.
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As the frequency of the airfoil oscillation diminishes in
the limit, all time derivatives vanish and equations {1)-(3)
reduce to

limF=Fy-A=F,
70

where F is the static load response. If the airfoil motion is
unsteady, but remains entirely within the iinear range, then
A = 0 and the load is completely determined by the solution
of equation (2) for I7, .

Small-Amplitude Equations

Tn determine the relationships between the six coeffi-
cients and @, an experiment is required in which the airfoil is
made to undergo pitching oscillations at different frequencies
and mean angles, and for values above and below stall.
Although the pitching motion can be random (ref. 11), only
harmonic variations in incidence will be considered. Letting
ap denote the mean angle, a; the amplitude, and k the
reduced frequency of oscillation, the incidence can be
generally expressed as

=gyt (ﬂ[a, e'kT] (4)
and is not restricted to small-amplitude motion. However, if
the amplitude of the oscillation is small, say &, <7 1°, then
the corresponding load can be approximated by

F=F+Q[F k] )
where F represents the mean value of the load, not necessar-
ily equal to F, and F is a complex function representing the
modulus of the first harmonic of the load. This is only an
approximate expression for the Joad since the forcing func-
tion in equation (3), and the coefficients in both equa-
tions (2) and (3), are noniinear functions of . As such,
equation (5) is more correcily written with higher order
terms; however, experiments have shown that when the
amplitude of the oscillation is sufficiently small, the load
response is nearly elliptical so that the first-harmonic repre-
sentation is acceptable.

Given the experimental observation that for small-
amplaude oscillations a first-order input in a produces a first-
order cutput in F, the governing equations (1)-(3) can be
simphificd to a system with locally constant cocfficients and
with forcing functions that are first-order harmonic relative
to a. The forcing function in equation (2) already has a first-
hammonic form since it is linear in « and its derivatives. The
same is not generally true of the forcing function in equa-
tion (3) since the term A is norm>lly quite nonlinear with a.
However, given th. restriction that the oscillations will be
small in amplitude means ta.t 2 piecewise-linear variation
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with & can be ascribed. In this case, the fu~stion A{a) cai he
written as

dA
Blg = Bly, * (@~a0) T 6

|
g

Although the variation of Fj with a is simply 4 stzaight line,
regardless uf the amplitude of oscillation, it will nevertheless
be expressed in the same form as for A; so that

df,
Flla=Fl'ao “"(&-ao) '&Z (7)

Qac

Reclaiming the imaginary parts of @ and F in equa-
tions (4) and (5) above, the dependent and independent
variables become

o=y + 0y elv? ®)
Fl"ﬁ‘:l +F1 eikT (9)
Fz sﬁz +ﬁ2 eikT (10)

Substituting the quantities given in equations (6)-(10) into
the governing equations (1)<3) yields

F=F, +F, +(F, + £,)e*" an
_ —— dF;
N+ (A tik)F, ¢ T=AF,; +IA—
o do
@
+ikQs + 0) -5k | o, %7 (12)

1By + (r+iak - Ky %7 = Al -+ iek)e (ikrdA l
0 da .

(13)

Equations (12) and (13) both state that two equalities must
be satisfied; the terms of one equality are steady while those
of the other are unsteady (identified by their product with
the complex potential term). The equalities that are com-
posed of steady terms are:,

F‘ =Fl|ao
and
F= 'Alao

Summing the above two expressions to obtain the meaa
value for the load gives

.. =
Lona o

S I

[
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F=Fllao -A]ao =F (14
and states that whe, the amplitude of the oscillation is small
the mean load will be the same as its static value. In actual-
ity, the mean valtue will depart slightly from its static value as
the frequency of oscillation is increased; howevcr, the linear-
ization of the equations prevents thls behavior from being
reproduced. Taking .imilzr steps to arrive at the unsteady
portion of the load results in

ol
da o
T vy W

dFI
AN—| +ikQs+o)-sk?| (r+iek)
do o J
(A +ik)

eyt

2

This relatior represents the transfer function of the oscillat-
ing portion of the oad (F) relative to the input (a, ). Separat-
ing the real and imaginary components of equation (15)

yields
Fl 4 )
Qo

|]RI—
0y da

+ k2_ O~ d_._Fl
g CFE) \ de

. k*(r-ae) -r* dA

— 16
(K -r)* + (ak)? da o (16)
and
£ dF,
9-—] =ks + _k_)\_._ g__.l
@ § (A% +k%) dole,
ek(k*-r) +akr dA I
+ ——— — —
&* -9 + (ak)* dol an

o

and for lare valves of x, astaqng that & >> A, equa-
ticn (16 showe that o is the asympiotic vai, or the real
part of the load; similarly, equatio~ (17) shovs that s is the
asymptotic value of the rate of change of the imagin.cy part
of the loa with respect to the reduced frequency. In olbor
words,

-~

Lm F——=a+iks (18)
koo

The small-amplitude ecjuations are now in a convenient
form to evaluate the six coefficients, and they can he apolied
over tre entire incidence range, both above and below stall.
Te evaluate those coefficients, an experirient must be per-
formed to obtain the lcad mweasurements during small-
amplitude oscillations. The measureinents are then Fourier

analyzed to determine the real and imaginary components of
the first harmonic. The coefiicients, which are taken to be
constant during the oscillation around any given mean angle,
must a’sume values as required to satisfy the equality
betwesn the real and imaginary load measurements and those
descnibed by equations (16) and (17). After obtaining these
coefficients, and knowing the static behavior of the airfoil,
the governing equations (1)-(3) can be solved to obtain the
load. This entire sequence is diagrammed in figure 2.

DESCRIPTION OF THE EXPERIMENT

The experiment was conducted in the 4000-liter, closed-
circuit facility at the Aeromechanics Laboratory Water
Tunnei, Ames Research Center (fig. 3). The test section is
21 cin wide, 31 cm high, and extends horizontally a distance
of 86 cm. The airfoil selected for this study was a Boeing-
Vertol VR.7, having a two-dimensional planform with a
chord of 10 cm. The airfoil was positioned so that it spanned
the width of the test section to within 0.015 cm of either
side. In order to mirimize the moment of inertia about its
pitch axis, the airfoil was cast from a lightweight epoxy resin
around s metal spar. The pitch axis was placed at the quarter-
chord location. When installed, the spar of the airfoil
extended through the test-secticn windows and was sup-
ported by lift and drag transducers on both sides (fig. 4). One
end of the spar was adjoined to an instrumented drive shaft
through a torsionally stiff coupling so that airfeil incidence
and pitching moment could be measured. Frictional
moments imparted by the support bearings and seals were
aiso measured and later treated as dynamic-load tayes.

Electrical instrume.atation corsisted of transducers for
th» measurement of zirfoil incidence, lift (both sides), drag
(both sides), total pitcaing moment, and the bearing and
seal moments (both sides). Afte, amplification, tnese signals
were either appropriately summed (i.e., total pitching
moment minus both frictional moments) and displayed on
local monitors; or they were transmitted to a remote dat,
acquisition system where they were digitized, averaged, and
stored for later processing. Digitizing and enseroble averaging
was based on two additional signals: a 360/rev pulse train
that was synchronous with wt, and a /rev pulse that was
s-achronnus with the beginning of each cycle of aisfoil
o~ciftation. Ondire monitoring for smoothness of the ensem-
ble zvargg~ of a particasar load provided the basis to termi-
nate in¢ cata acquisition; and the number of cycles used in
generating the average, therefore, was dependsnt on the
extent of the nonperiodic content of tae signal. It is esti-
mated that the incidence of the airfoil could be measured to
an accuracy of 0.2°. Lift and drag measurements are con-
sidered to be accurate to 0.01 N and the pitching moments
to 0.002 N-m.

----------------
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With the airfoil set ai zero incidence, the speed of the
water was adjusted to produce a dynamic pressure of
689 N/m? (0.10 Ibgin.2). This pressure corresponds to a
Reynolds number of Re = 127 ) based on the chord of the
airfoil. The tunnel was then oc=1ated at a fixed drive speed
for the duration of the experiment. Some reduction in tunnel
speed is thought to have occurted when the airfoil was
stalled; however, no attempt was made to either measure or
account for this degradation.

In order to obtain the asymptotic character of the real
and imaginary components of the load at high frequency, say
at k = 1.2, an oscillation frequercy of around 4.5 Hz would
be required. Inertial loads might, therefore, become a prob-
lem. The inertial loads are potentially less serious in water
than in air because of the relatively low density ratio
Pmodel/Pwater compared with pyq01/p4ir. However, at the
beginning of this test it was not knowr whether the inertial
effects on the hydrodynamic load responses could be
neglected. Furthermore, there was also concern about
gravitational effects (buoyancy) and the possibility of
variable support loads (due to misalignments) during angle
changes. The contribution of all such loads to the balance
measurements is summarized schematically in figure S.

To obtain the desired hydrodynamic load, the gravita-
tional, support, and inertial loads must be removed from the
unsteady load measurements. This can be accomplished
during the data reduction phase, provided that the appro-
priate quantities are measured at the time of the experiment.
1he inetz] effects can be accounted for by lowering the
water in the test section and performing the same unsteady
load measurements in air. The gravitational and support loads
can be accountad for by performing quasi-static measure-
ments in water (at zero flow) as well as in air. Having
recorded these different results, the final hydrodynamic load
can be calculated by following the procedure outlined in
fignre 6.

DISCUSSION OF RESULTS

Load Measurements

The variables Fj(e) and A(a) are both essential elements in
the math model, and *hey can easily be dctermined fzom the
st-dc beravior of the aitfoil. Their vamation with a must be
established over the entire incidence range for which large-
amplitude responses are to be calculated. Static measure-
ments of iift, drag, and pitching moment are shown in
figure 7. In order to evaluate the capability of the model for
calculating loads under dynamic stall conditions, measure-
ments were alsc made with the airfoil undergoing large-
amplitude oscillations over a range of reduced frequencies
(figs. 8-14).

TN e Bl T

To determine the six coefficients of the math model,
small-ampiiiude oscillations in pitch are required around a
selection of mean angles in the linear and noulinear range.
For some airfoils, the static stail angle maiks the division
between these two ranges, however, as can be seen from
figure 7, the nonlinear range in the present case begins well
below the stall angle. Within the linear range, three of
the coefficients become inconsequential because A = 0;
while among the remaining three coefficients to be evaluated,
two are usually found to be constant (ref. 12). As a result
of this reductioa in complexity, data are needed for only
a few mean angles in the linear range. In the present case
the linear range appears to be so brief that little advantage
can be realized in the number of mean angles to he
required.,

In keeping with the assumptions under which equa-
tions (16) and (17) were derived, the amplitude of oscillation
was restricted to a; = 0.5°. Measurements were made at
13 mean anges (o, = ¢°, 1.5°,3°,5°%,7°,9°,11°,13°,15°,
17°, 19°, 21°, and 23°) and 11 reduced frequencies
(k = 0.025, 0.05, 0.10, 0.15, 0.2, 0.3, 04, 0.5, 0.7, 0.9,
and 1.2). Excluding the lowest-frequency case, these small-
amplitude results are presented in figures 15(a)-15(m) for
the lift, drag, and pitching moment. Also included are the
first-harmonic equivalents of these data (shown as dashed
fines), The high frequency component of the lift and
pitching-moment signals, especially apparent for values of
incidence below 1.5°, is due to Karman-vortex shedding from
the airfoil. The frequency of this vortex shedding appears to
be around 47 Hz. The first-harmonic curves appear to com-
pare well with the actual data, and therefore will be accepted
in the following analysis as an accurate replacement for the
small-amplitude measurements. Examining these first-
harmonic curves in more detail, the real and imaginary com-
ponents of each load modulus are separated and shown in
figure 16. For any given load, these components correspond
to ®[F] and $[F1 in equations (16) and (17), and as such
provide the basis on which the six coefficients can be
determined.

Coefficient Evaluation

The most importart step in finalizing the governing differ-
ential equations for the loads on a given airfoil is the deter-
wiastion of the equation parameters. Specification of the
parameters Fi(a) ana A(x) evolves directly from the static
load measurements, which are shown in figures 17 and 18.
To smooth out any irregularities in the experimental data,
anJd to provide a more well-behaved variation with incidence
so that reasonably bounded derivatives could be caiculated,
the static curves have been fitted with piecewise-cubic
splines. Both A and dA/da« are derived using these curve fits.

Evaluation of the six coefficients is less straightforward.
Generally speaking, coefficients cannot be found whick
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precisely satisfv equations (16) and (17) over the frequency
range decired, and at the same time culminate in 2 smoocth
dependence on incidence. Instead, solutions must be sought
at each mean angle which satisfy the equations for ® [F] and
S[F] in a least-squares sense. Furthermore, experience has
shown that a particular order should be followed in establish-
ing the set of coefficients. Since the primary intent of this
presentation is to provide an example of the application of
the ONERA model, the following discussion will be limited
to the lift coefficient so that the method can be discussed in
more detail and with greater clarity.

Before evoking this procedure, it is useful to identify
those coefficients that, from experience, have been found to
be independent of incidence and whose values are essentially
declarable by inspection. Considering the linear range, equa-
tion (16) states that

dl l
A2 = + ok?
ﬁ @ (7
]fI—|=—
[a,] )\2 + kz (19)

This expression can be used to examine the bounds on
R[F/ey] as k is varied. On one extreme, k = 0 requires that
R{Fja,] = (dFy/de)y,. On the other extreme, letting
k - large suggests that &[F/a,] -»0. Although o is in general
a function of a, its value can be readily approximated in the
linear range. It can also be shown that the average value for
®[F/a;] over this extreme range of reduced frequencies is
[(dFy/de), + 0]/2, and that this value is obtainsd when
k = A. Accordingly, a second coefficient can be approximated
in the linear range. Experience also indicates that the magni-
tude of A has an effect on the manner in which the real and
imaginary asymptotes are approached in the linear range;
small values accelerate the approach and large values cause
the approach to be more gradual (ref. 13). Additionally,
some observations have been made about A in the nonlinear
range. Experience has also shown that for low and medium
reduced frequencies, F, is dominant over F, . Recalling from
equation (15) that the first term of the second member
represents F; and that the second term represents F,, it is
evident from the composition of these two quantities that
the value of A is of no consequence in this case. Furthermore,
an examination of equation (18), which is valid at high
reduced frequencies, shows that A is completely absent from
the expression for £ (which equals the sum of F; and F;).
This implies that the value of A has a negligible effect on the
math model for all frequencies in the nonlinear range, and
that its value in the linear range can simply be extrapolated
over the entire incidence range. As a result, it has been the
practice at ONERA to simply accept a constant value for
A. In keeping with this attitude, A can be approximated from
the data for the real component of the lift at og = 0° shown
in figure 16(a):
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A=0.25 (Va) (20)

Another coefficient that appears to vary littie with inci-
dence is 5. Representing the asymptotic slope of the imagi-
nary part of the load at high reduced frequencies, the experi-
mental data presented in figure 16 confirm that s car indeed
be approximated by a constant over nearly the entire inci-
dence range. For those cases in the nonlinear - ~ge where the
asymptotic value has not yet been reached at the nighest
reduced frequency under consideration (i.e., at ag = 23°), it
is common practice to accept the extrapolated value for s
from the linear range. Taking an average of these measure-
ments yields

$=0.12 (Vo) (21)

Determination of the remaining four coerficients is more
laborious since they must be considered simultaneously, they
typically all vary with incidence in some nonlinear fashion,
and yet nowhere do they satisfy the governing equations
precisely. The optimizing algnrithm selected for this task is
based on a numerical scheme that finds solutions to equa-
tions (16) and (17) so as to produce the least accumulated
disagreement with the measured load responses. Considering
that these coefficients will vary mostly in the nonlinear
range, and since A is a more direct measure of the departure
from the linear curve than is &, all four coefficients will be
considered as explicit functions of A instead of a. This
implies that their values in the linear range (where a may
vary greatly) will be invariant and equal to their values at
A=0,

Exercising the optiraization routine with all four coeffi-
cients initially unknown yields an expected dispersion of
solutions (fig. 19). The customary step at this point in most
parameter-identification procedures is to recognize which
feature or characteristic of the data is most prominent, and
on which coefficient is this feature most dependent. Sensi-
tivity tests have shown that the location of the peak values
of both the real and imaginary responses is such a feature,
and that it is strongly (but not solely) dependent on r. The
optimization for r will therefore be examined first, and a
curve defined that best describes this coefficient’s variation
with A. Although a simple parabolic relationship might have
sufficed in this case, the distribution of points for the otner
three coefficients indicated that a more flexible curve fit
would be necessary. To be consistent, a piecewise-cubic
spline was chosen for all curve fits. A curve is first faired
through the data and then a set of manufactured data points
is defined along this curve, On any given interval between
these manufactured points, the curve is described by:

V=g 4 iy (B = 0+ £y, (B ~ @ + 5,8y - @)°

(22)
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where m represents the interval for which o, <a <o, .
Obviously. this curve fit is not unique, and a great deal of
subjectivity can influence the weighting of various data
points. In such cases, experience can become an important
factor in the shaping of curves through the data. In any case,
it may still be nezessary to make certain adjustments to the
coetficients after reviewing how the model calculates a large-
amplitude case. For example, assume that several calculations
are performed for an airfoil undergoing large-amplitude oscil-
lations through stall. Furthermore, assume that the airfoil
then returns to attached flow conditions with suspiciously
little change in the hysteresis, in each case, as the reduced
frequency is increased. This may suggest that the values of
a and r in the linear range (hence their value at A = 0) need
to be modified to allow less damping and more response in
the equation for £, . This behavior could not have been fore-
seen from small-amplitude tests, and perhaps not even from
targe-amplitude tests where the reduced frequency is small.
However, for large-amplitude oscillations at moderate
reduced frequencies, the time-history effects become suffi-
ciently significant and can influence the loads even though
the forcing function in the equation for F, may be locally
small or zero.

Although the curve for r can be regarded as provisional,
and eventually may be modified, it will be considered as
fixed for the present. With A, s, and r specified, the optimiza-
tion process is repeated; but now only o, a, and e are con-
sidered to be unknown. As can be observed in figure 20, the
dispersion of points for the remaining three coefficients is
considerably reduced, thereby the plotting of succeeding
curve fits can be done with greater confidence. Representing
the asymptotic value of the real part of the load, the data for
o will be considered as the most reliable even though the
maximum reduced frequency at each «, generally appeared
to be too low to reveal the actual asymptote. A simple curve
fit through the data for o would be especially infeasible in
this case. For the special case when A = 0, the value for o
used to evaluate A (recall when a = 0°) also applies. For
values of A near zero, ¢ is perhaps more dependent on «
(explicitly) than on A; whereas for larger values of A, a very
demonstrative dependence on A is observed. In fairing a
curve through the data for o, those points for which A =~ 0
(and which may eventually require some explicit dependence
on a) were ignored and an expression similar to (22) was
established for a(A).

With only two unknowns remaining, a and e, the optimi-
zation procedure yields a set of new values for each coeffi-
cient with even less dispersicn (fig. 21). Like o,bothaand e
exhibit a behavior around A ~ 0 that may require an explicit
dependence on a if strict adherence is to be retained. How-
ever, in keeping with the decision made for g, those points
will be ignored for the present. Instead, the value of each
coefficient at A = 0 will be that obtained by extending the
curve from higher values of A. The coefficient a affects both
the amplitude and width of the mid-frequency wave that is

characteristic of the real and imaginary responses in the non-
linear range (oo > 9°). The data in this range appear to be
reasonably well behaved so that a curve similar to the one
described by (22) can be established for a(A). This curve,
when extrapolated back to A = 0, yields a value for a that is
substantially higher than what the optimizations (as well as
the experimental observations) require. During a calculation
for an airfoil at low incidence recovering from stall, this
region will contribute significantly to the damping in the
equation for F’z . Therefore, some modification to the curve
for a as A = 0 can be anticipated.

The optimization process can now be narrowed down to
the evaluation of a singie unknown, e, and the resulting dis-
tribution of computed values for this coefficient is shown in
figure 22. Although the variation of e with A is quite differ-
ent after stall (A > 0.9) compared with its behavior over the
remainder of the nonlinear range, the fitting of a piecewise-
cubic spline to the data is straightforward. As can be seen
from the governing equations (1)-(3), the coefficient e con-
tributes only to the forcing function for F,. Aside from its
impact on the time history of the solution as A - 0, the fact
that e appears as a product of A means that its value in the
linear range is not important. The unknown e affects the
amplitude of both the real and imaginary parts of the
response in the nonlinear 1ange as well as the phase of the
response relative to the motion of the airfoil. Negative values
of e cause a phase lag with respect to o; and as the magnitude
of e increases, the phase lag tends toward 90°. The opposite
trend occurs for positive values of e.

To conclude the optimization process, the expressions
obtained for the six coefficients will be coupled with equa-
tions (16) and (17) to examine the real and imaginary com-
ponents presently represented by the model. The focus of
the examination will be on how well the model reproduces
the real and imaginary components of the lift coefficient
obtained in the experiment. Figures 23 and 24 show the
comparison between the experimental values (discrete sym-
bols) and the calculated values (solid curves) at the mean
angles for which data exist. Excellent agreement is obtained
through ap = 15°; however, the calculations resemble only
the trend of the experiment for mean angles between
17° < ay < 23°. That such good agreement exists between
the calculations and the experiment for low values of a (in
spite of a disregard for many of the computed optimizations
in the range A =~ 0) suggests that the smail amplitude tests
provide litile information about the coefficientsr, 0,4, and e
in this domain. The less satisfactory agreement between the
calculations and the experiment for the higher values of &,
(4 > 0.2) may be either due to an inadequacy in the model’s
equations to account for a fully separated flow or due to the
optimization process which assigned equal weighting to each
of the experimental observations. In any case, a judgment on
the consequence of this shortcoming will have to await the
calculation of a large-amplitude case. The topographies of
the real and imaginary components over the k-ao plane are
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shown in figure 25 for the experimental data and in figure 26
for the matk model using the coefficient optimizations
(recall fig. 22).

Large-Amplitude Calculations

Using the expressions for the six coefficients obtained
above, the unsteady load for a prescribed airfoil motion can
be calculated from equations (1)<(3). First, the governing
system must be reduced to a set of first-order equations in
order to use a standard differentialequation solver. The
governing equations arc readily transformed to the following:

F=F, +F, 3

Fy = -NFy + M+ (As + 0)a + i
> (23)

Fz =F3

1:'3=—aF3-rF2-(rA+e./:‘.) J

Given a set of initial conditions, say F,('r =0) =00
(i=1, 2, 3), a time marching solution can be generated with
dimensionless time 7, the independent variable, expressed as

_(2n\n =
= (7)§ , (n=123,..) (24)

TrT=

Qlt
k

where R denotes the total number of increments in one
cycle. The number of time steps required to reach a steady-
state solution depends on the magnitude of the unsteady air-
foil motion. Therefore, the higher the reduced frequency, k,
the greater the number of time steps required.

By requiring that 7 = 0 when a = 0°, the sinusoidal motion
of the airfoil can be described by

a=oy -0y cos Tk 25)

The calculations are based on a mean angle and amplitude of
oscillation of @y = @; = 10° and a range of reduced frequen-
cies from 0.002 < k < 0.25. These conditions were chesen
because they challenge the math model to accurately predict
the dynamic loads occurring during deep stall and with vary-
ing degrees of overshoot (values above static Cpmax) and
hysteresis. The results for the lift coefficient are shown in
figures 27(a)-27(g), and a steady-state solution was reached
during the first cycle of oscillation for all of the cases
calculated.

Each figure is subdivided into three subplots. The right-
hand subplot displays the calculated components of the lift
coefficient, F; and F,, as well as the measured static
behavior of the airfoil (dashed line). The lower-left subplot
shows the forcing functions f; and f; that appear in the

computation of equations (2) and (3), respectively. The
upper-left subplot shows the calculated value for the lift
coefficient, F; + F,, along with ihe actual measured
response (dashed line). The results given in these figures indi-
cate that the math model does reproduce qualitatively the
increases in both overshoot and hysteresis as the reduced
frequency is increased. Even the slight surge in the lift
response just prior to stall (as well as jusi prior to reattach-
ment) is correctly predicted by the math model (ie., see
fig. 27(c)). This characteristic is believed to be attributable
to the term A that appears in the forcing function for F,,
and reflects the abrupt static stall that was actually measured
in the experiment (recall figs. 17 and 18). However, the
extent of both the overshoot and the hysteresis appears 10 be
quantitatively incorrect. In addition, the calculated lift coef-
ficient during the deep-stall phase of the motion (&< 0} is
generally too low, and becomes even more so as the reduced
frequency is increased. It appears that a decrease in accuracy
results when the values of both the reduced frequency and
the amplitude of oscillation are large.

Tc overcome the quantitative disagreement in the lift
overshoot between the calculations and the measurements, it
appears that the math model must be amended to better
account for the effects of stall delay. This eventuality was
envisaged early on by the architects of this model (ref. 8).
Consequently, an allowance for the observed delay in stall
was provided for through the product of a unity-step func-
tion, €, with the forcing function on F, in equation (3). The
intent of this procedure is to disable the forcing function on
F, during a certain period of time, 67, beginning when the
static stall angle is exceeded. This dimensionless-time interval
is defined by

20,
o7 = (—°-°) 5t (26)
c
and typically has been set at about §7 = 10 in recent applica-
tions of the model (ref. 12). After satisfying this delay in
time the forcing function then assumes its current value. The
time-delay concept (a prominent feature in ref. 6) is physi-
cally based on the overshoot caused by the stall vortex. This
vortex induces additional lift on the airfoil when passing over
the airfoil.

Since vortex shedding just prior to reattachment is gener-
ally not obvious from available experimental data, it is
unlikely that a similar time-delay factor applies to the stall
recovery phase of the cycle. However, since a hysteresis
clearly exists in the static response, it does seem appropriate
to distinguish between & > 0 and & <0 in terms of the defi-
nitions for A (and therefore A). Doing so would automati-
cally establish a persistence in the forcing function on F, and
cause an extension of the hysteresis. A proper accounting for
the stall-delay effect during & > 0, as well as the recognition
of a separate A during @ < 0, both have a potential for
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improving substantially the quantitative accuracy of the
math model. As such, thcse considerations need to be evalu-
ated before proceeding to the modeling of the drag and
moment responses.

CONCLUSIONS

A semiempirical model, developed at the Office National
D’Etudes et de Recherches Aerospatiales (ONERA) to
predict the unsteady loads on an aiifoil that is experiencing
dynamic stall, has been described. Calculations were per-
formed for comparing with results from .n experiment in the
Aeromechanics Laboratory Water Tunnel. The static and
dynamic data obtained were for a Boeing-Vertol VR-7 airfoil
at a Reynolds number of Re = 120,000. Although lift, drag,
and moment responses (both small and large amplitude) have
been included in this study, the comparisons that have been
discussed, including the following conclusions, are confined
to the lift coefficient.

1. The procedure, established at ONERA to identify the
six coefficients in the math model, was found to be straight-
forward and the trends consistent with earlier investigations
when used with small-amplitude experimental data.

2. Coefficient optimizations were found that produced
excellent agreement between calculated and measured small-
amplitude responses, as long as the mean angles were within
0° < @ < 15°. For the higher mean angles that correspond
to deep stali, 17° < e, < 23°, the calculated small-amplitude
responses based on optimized coefficients in this range were
not in good agreement with measured values.

3. The shape of the staticdift curve in the present experi-
ment differs from the idealized version (as well as from mea-
surements on other airfoils at higher Reynolds numbers)
around which the math model was originally formulated.

In the present case, the static curve becomes nonlinear prior
to stall and deviates greatly from the classic tangent to the
data near o = 0°. Furthermore, when stall does occur, it is
quite abrupt. The extent to which this behavior affects the
applicability of the modcl has not yet been resolved.

4. A comparison between calculations and measurements
for large-amplitude cases at various reduced frequencies
shows that the math model does reproduce qualitatively the
increases in both dynamic-lift overshoot (values above static
Cjmax) and hysteresis as the frequencies are increased. Even
the slight surge in the lift response just prior to stall (as well
as just prior to reattachment) is correctly predicted by the
math model. However, the extent of both the overshooi and
the hysteresis appears to be quantitatively incorrect. In addi-
tion, the calculated lift coefficient during the deep-stall
phase of the motion is generally too low, and becomes even
more so as the reduced frequency is increased. It appears
that a decrease in accuracy resuits when the values of both
the reduced frequency and the amplitude of oscillation are
large.

5. It is believed that the quantitative accuracy of the
math model can be substantially improved by incorporating a
time-delay factor to account for the delay in stall during the
& > 0 portion of the cycle, Also. based on the observed static
hysteresis, an improvement in the extent of the dynamic
hysteresis may be realized by atlowing for a separate A func-
tion during the & < O portion of the cycle. It ic recom-
mended that consideration be given to both of these poten-
tial improvements to the model before examining the drag
and moment responses.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, June 18, 1984
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Figure 14.— Load measurements for a= 10° + 10° sin wt at k = 0.25.
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Figure 16.— Variation of the real and imaginary load components with mean angle and reduced frequency.
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Figure 25.— Measured values of the real and imaginary parts of the lift coefficient.
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Figure 26.— Calculated values of the real and imaginary parts of the lift coefficient.
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